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ABSTRACT

This thesis describes an implementation of a mark-sweep garbage collector (GC) for shared-

memory machines and reports its performance results. It is a simple `parallel' collector in

which all processors cooperatively traverse objects in the global shared heap. The collec-

tor stops the application program during collection phase. Implementation is based on the

Boehm-Demers-Weiser conservative GC library (Boehm GC). Experiments have been con-

ducted on two systems. One is Ultra Enterprise 10000, a symmetric shared-memory machine

with 64 Ultra SPARC processors, and the other is Origin 2000, a distributed shared memory

machine with 16 R10000 processors. The application programs used for our experiments

are BH (an N-body problem solver with Barnes-Hut algorithm), CKY (a context free gram-

mar parser), Life (a life game simulator) and RNA (a program to predict RNA secondary

structure).

On both systems, load balancing is a key to achieving scalability; a naive collector without

load redistribution hardly exhibits speed-up. Performance can be improved by dynamic load

balancing, which moves objects to be scanned across processors, but we still observe several

performance limiting factors, some of which reveal only when the number of processors is

large.

On 64 processor Enterprise 10000, the straightforward implementation achieves at most 12-

fold speed-up. There are several reasons for this. The �rst one is that large objects became

a source of load imbalance, because the unit of load redistribution was a single object. Per-

formance is improved by splitting a large object into small pieces before pushing it onto

the mark stack. Secondly, the marking speed drops as the number of processors increases,

because of serializing method for termination detection using a shared counter. By employ-

ing non-serializing method using local 
ags, the idle time is eliminated. Thirdly, processors

were sometimes blocked long to acquire locks on mark bits in BH application. The useless

lock acquisitions are eliminated by using optimistic synchronization. With all these careful

implementation, we achieved 14 to 28-fold speed-up on 64 processors.

Physical memory allocation policy has a signi�cant e�ect on Origin 2000, a CC-NUMA archi-

tecture. With the default policy that allocates a physical page to the node that �rst touches

that page, the performance does not improve on more than eight processors. By distribut-

ing memory regions in the round robin policy, we achieved 3.7 to 6.3-fold speed-up on 16

processors.



論文要旨

共有メモリ型並列マシン上でのマークスイープ法ガーベージコレクタ (GC)の実装と性能評価を報

告する。実装したGCは並列GCであり、共有ヒープ中のオブジェクトに対して全プロセッサが協

調的にGC処理を行なう。GC処理が開始する時、アプリケーションプロセスを停止させる。本GC

の実装を、 Boehm-Demers-Weiser conservative GC library(Boehm GC)を基にして行なった。

実験を対称型共有メモリマシンUltra Enterprise 10000 (Ultra SPARC プロセッサ � 64)上と、

分散共有メモリマシンOrigin 2000 (R10000 プロセッサ � 16)上で行なった。アプリケーションと

して、 BH(Barnes-Hut N体問題プログラム)、 CKY (文脈自由文法パーザ)、 Life(ライフゲームシ

ミュレータ)、 RNA(RNA2次構造予測プログラム)を用いた。

いずれのマシンであっても、スケーラビリティを実現するためにはGC処理の負荷分散を行なう必

要がある。負荷分散を行なわない場合、並列化による速度向上はほとんど見られなかった。本GCは

マークフェイズ中に、これからスキャンすべきオブジェクトをプロセッサ間でやりとりすることによ

り動的負荷分散を行なう。この動的負荷分散により性能の向上が見られるが、いくつかの要素が、特

にプロセッサ数が多い場合にスケーラビリティを低下させる。

Enterprise 10000上における安直な実装の場合、台数効果は 12倍程度で頭打ちになった。安直

な実装の持つ問題の一つは、巨大なオブジェクトが負荷の不均衡をもたらすことである。この問題

は、負荷の移動がオブジェクト単位で行なわれるために起こった。巨大なオブジェクトが探索中に見

つかった時にそれらを小さく分割することにより、より細粒度な負荷分散が可能になり性能が向上

した。また、 32プロセッサを超えた時にマーク速度の低下が見られた。これはマーク処理の終了判

定に用いていた共有カウンタが原因であった。代わりに各プロセッサ専用のフラグを用いることによ

り、ロック待ち時間がなくなり性能が向上した。また BHアプリケーションで、マークビットに対す

るロック待ち時間が長いため、性能が上がらない問題が見られた。マークビットに対してロックなし

で readを行ない、それから compare&swapで変更を行なうことにより、無駄なロック獲得を減少

させた。これらの点に留意して実装することにより、Ultra Enterprise 10000上で 64プロセッサ用

いたとき平均 14～ 28倍の台数効果を得た。

Origin 2000上では、メモリのノード間の配置も性能に大きく影響する。メモリ領域を、それを初

めにアクセスしたプロセッサと同じノードに割り当てるというデフォルトの方式の場合、 8プロセッ

サ以上での速度向上が見られなかった。一方、アクセスするプロセッサに関係なくメモリ領域をノー

ド間で均等に割り当てることにより、性能はプロセッサ数に伴い向上し、 16プロセッサで 3.7～ 6.3

倍の台数効果を得た。
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Chapter 1

Introduction

Shared-memory architecture is attractive platform for implementation of general-

purpose parallel programming languages that support irregular, pointer-based data

structures [4, 20]. The recent progress in scalable shared-memory technologies is also

making these architectures attractive for high-performance, massively parallel com-

puting.

One of the important issues not yet addressed in the implementation of general-

purpose parallel programming languages is scalable garbage collection (GC) technique

for shared-heaps. Most previous work on GC for shared-memory machines is concur-

rent GC [6, 10, 17], by which we mean that the collector on a dedicated processor

runs concurrently with application programs, but does not perform collection itself in

parallel. The focus has been on shortening pause time of applications by overlapping

the collection and the applications on di�erent processors. Having a large number of

processors, however, such collectors may not be able to catch up allocation speed of

applications. To achieve scalability, we should parallelize collection itself.

This paper describes the implementation of a parallel mark-sweep GC on a large-

scale (up to 64 processors), multiprogrammed shared-memory multiprocessor and

presents the results of empirical studies of its performance. The algorithm is, at

least conceptually, very simple; when an allocation requests a collection, the applica-

tion program is stopped and all the processors are dedicated to collection. Despite

its simplicity, achieving scalability turned out to be a very challenging task. In the

1



empirical study, we found a number of factors that severely limit the scalability, some

of which appear only when the number of processors becomes large. We show how to

eliminate these factors and demonstrate the speed-up of the collection.

We implemented the collector by extending the Boehm-Demers-Weiser conservative

garbage collection library (Boehm GC [2, 3]) on two systems: a 64-processor Ultra

Enterprise 10000 and a 16-processor Origin 2000. The heart of the extension is dynamic

task redistribution through exchanging contents of the mark stack (i.e., data that are

live but yet to be examined by the collector). At present, we achieved 14{28-fold

speed-up on Ultra Enterprise 10000, and 3.7 to 6.3-fold speed-up on Origin 2000.

The rest of the paper is organized as follows. Chapter 2 compares our approach

with previous work. Chapter 3 brie
y summarizes Boehm GC, on which our collector

is based. Chapter 4 describes our parallel marking algorithm and solutions for perfor-

mance limiting factors. Chapter 5 describes the experimental conditions. Chapter 6

shows experimental results, and we conclude in Chapter 7.
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Chapter 2

Previous Work

Most previous published work on GCs for shared-memory machines has dealt with

concurrent GC [6, 10, 17], in which only one processor performs a collection at a time.

The focus of such work is not on the scalability on large-scale or medium-scale shared-

memory machines but on shortening pause time by overlapping GC and the application

by utilizing multiprocessors. When GC itself is not parallelized, the collector may fail

to �nish a single collection cycle before the application exhausts the heap (Figure 2.1).

This will occur on large-scale machines, where the amount of live data will be large

and the (cumulative) speed of allocation will be correspondingly high.

We are therefore much more interested in \parallel" garbage collectors, in which a

single collection is performed cooperatively by all the processors. Several systems use

this type of collectors [7, 16] and we believe there are many unpublished work too, but

there are relatively few published performance results. To our knowledge, the present

paper is the �rst published work that examines the scalability of parallel collectors on

real, large-scale, and multiprogrammed shared-memory machines. Most of previous

publications have reported only preliminary measurements.

Uzuhara constructed a parallel mark sweep collector on symmetric multiprocessors

[22]. When the amount of free space in the shared heap becomes smaller than a

threshold, some processors start a collection, while other processors continue applica-

tion execution. The collector processors cooperatively mark all reachable objects with

dynamic load balancing by using global task pool. Then they sweep the heap and

3



The time when memory
region can be reused GC

Time Time

Application

PEs

Concurrent GC Parallel GC (Our approach)

Figure 2.1: Di�erence between concurrent GC and our approach. If only one dedicated

processor performs GC, a collection cycle becomes longer in proportion to the number

of processors.
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join the application workers. This approach has the same advantage as concurrent

GC, and it can prevent a single collection cycle from becoming longer on large-scale

machines.

Ichiyoshi and Morita proposed a parallel copying GC for a shared heap [11]. It

assumes that the heap is divided into several local heaps and a single shared heap.

Each processor collects its local heap individually. Collection on the shared-heap is

done cooperatively but asynchronously. During a collection, live data in the shared-

heap (called `from-space' of the collection) are copied to another space called `to-space'.

Each processor, on its own initiative, copies data that is reachable from its local heap to

to-space. Once a processor has copied data reachable from its local heap, it can resume

application on that processor, which works in the new shared-heap (i.e., to-space).

Our collector is much simpler than both of Uzuhara's collector and Ichiyoshi and

Morita's collector; it simply synchronizes all the processors at a collection and all the

processors are dedicated to the collection until all reachable objects are marked. Al-

though Ichiyoshi and Morita have not mentioned explicitly, we believe that a potential

advantage of their method over ours is its lower susceptibility to load imbalance of

a collection. That is, the idle time that would appear in our collector is e�ectively

�lled by the application. The performance measurement in Chapter 6 shows a good

speed-up up to our maximum con�guration, 64 processors, and indicates that there is

no urgent need to consider using the application to �ll the idle time. We prefer our

method because it does not interfere with SPMD-style applications, in which global

synchronizations are frequent.1 Both of Uzuhara's method and Ichiyoshi and Morita's

method may interact badly with such applications because it exhibits a very long

marking cycle, during which the applications cannot utilize all the processors. Taura

also reached a similar conclusion on distributed-memory machines [21].

Our collector algorithm is most similar to Imai and Tick's parallel copying collector

[12]. In their study, all processors perform copying tasks cooperatively and any mem-

ory object in one shared heap can be copied by any processor. Dynamic load balancing

1A global synchronization occurs even if the programming language does not provide explicit bar-

rier synchronization primitives. It implicitly occurs in many places, such as reduction and termination

detection.

5



is achieved by exchanging memory pages to be scanned in the to-space among proces-

sors. Speed-up is calculated by a simulation that assumes processors become idle only

because of load imbalance|the simulation overlooks other sources of performance de-

grading factors such as spin-time for lock acquisition. As we will show in Chapter 6,

such factors become quite signi�cant, especially in large-scale and multiprogrammed

environments.

6



Chapter 3

Boehm-Demers-Weiser Conservative GC

Library

The Boehm-Demers-Weiser conservative GC library (Boehm GC) is a mark-sweep GC

library for C and C++. The interface to applications is very simple; it simply replaces

calls to malloc with calls to GC MALLOC. The collector automatically reclaims memory

no longer used by the application. Because of the lack of precise knowledge about types

of words in memory, a conservative GC is necessarily a mark-sweep collector, which

does not move data. Boehm GC supports parallel programs using Solaris threads.

The current focus seems to support parallel programs with minimum implementation

e�orts; it serializes all allocation requests and GC is not parallelized.

3.1 Sequential Mark-Sweep Algorithm

The mark-sweep collector's work is to �nd all garbage objects, which are unreachable

from the root set (machine registers, stacks and global variables) via any pointer paths,

and to free those objects. To tell whether an object is live (reachable) or garbage,

each object has its mark bit, which shows 0(= `unmarked') before a collection cycle.

We mention how Boehm GC maintains the mark bits in section 3.2. A collection

cycle consist of two phases; in the mark phase, the collector traverse objects that are

reachable from root set recursively, and sets (marks) their mark bits at 1(= `marked').

To mark objects recursively, Boehm GC uses a data structure called mark stack as

shown in section 3.3. In the sweep phase, the collector scans all mark bits and frees

7



objects whose mark bits are still `unmarked'. The sweeping method heavily depends

on how the free objects are managed. We describe aspects relevant to the sweep phase

in section 3.4.

3.2 Heap Blocks and Mark Bitmaps

Boehm GC manages a heap in units of 4-KB blocks, called heap blocks. Objects

in a single heap block must have the same size and be word-aligned. For each block

separate header record (heap block header) is allocated that contains information about

the block, such as the size of the objects in it. Also kept in the header is a mark bitmap

for the objects in the block. A single bit is allocated for each word (32 bits in our

experimental environments); thus, a mark bitmap is 128-byte length. The j th bit of the

i th byte in the mark bitmap describes the state of an object that begins at (BlockAddr

+ i �32+ j �4) where BlockAddr is the start address of the corresponding heap block.

Put di�erently, each word in a mark bitmap describes the states of 32 consecutive

words in the corresponding heap block, which may contain multiple small objects.

Therefore, in parallel GC algorithms, visiting and marking an object must explicitly

be done atomically. Otherwise, if two processors simultaneously mark objects that

share a common word in a mark bitmap, either of them may not be marked properly.

3.3 Mark Stack

Boehm GC maintains marking tasks to be performed with a vector called mark

stack . It keeps track of objects that have been marked but may directly point to an

unmarked object. Each entry is represented by two words:

� the beginning address of an object, and

� the size of the object.

Figure 3.1 shows the marking process in pseudo code; each iteration pops an entry

from the mark stack and scans the speci�ed object,1 possibly pushing new entries onto

1More precisely, when the speci�ed object is very large (> 4 KB), the collector scans only the �rst

4 KB and keeps the rest in the stack.
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push all roots (registers, stack, global variables) onto mark stack.

while (mark stack is not empty) f

o = pop(mark stack)

for (i = 0; i < size of o; i++) f

if (o[i] is not a pointer) do nothing

else if (mark bit of o[i] == `marked') do nothing

else f

mark bit of o[i] = `marked'

push(o[i], mark stack)

g

g

g

Figure 3.1: The marking process with a mark stack.

the mark stack. A mark phase �nishes when the mark stack becomes empty.

3.4 Sweep

In the sweep phase, Boehm GC does not free each garbage object actually. Instead,

it distinguish empty heap blocks from other heap blocks.

Boehm GC examines the mark bitmaps of all heap blocks in the heap. A heap block

that contains any marked object is linked to a list called reclaim list, to prepare for

future allocation requests 2. Heap blocks that are found empty are linked to a list

called heap block free list, in which heap blocks are sorted by their addresses, and

adjacent ones are coalesced to form a large contiguous block. Heap block free list is

examined when an allocation cannot be served from a reclaim list.

2The system does not free garbage objects on nonempty heap blocks, until the program requests

objects of the proper size (lazy sweeping). In order to �nd a garbage objects from those heap blocks,

mark bitmaps are preserved until next collection

9



Chapter 4

Parallel GC Algorithm

Our collector supports parallel programs that consist of several UNIX processes. We

assume that all processes are forked at the initialization of a program and are not

added to the application dynamically. Interface to the application program is the

same as that of the original Boehm GC; it provides GC MALLOC, which now returns a

pointer to shared memory (acquired by a mmap system call).

We could alternatively support Solaris threads. The choice is arbitrary and some-

what historical; we simply thought having private global variables makes implementa-

tion simpler. We do not claim one is better than the other.

4.1 Basic Algorithm

4.1.1 Parallel Marking

Each processor has its own local mark stack. When GC is invoked, all application

processes are suspended by sending signals to them. When all the signals have been

delivered, every processor starts marking from its local root, pushing objects onto its

local mark stack. When an object is marked, the corresponding word in a mark bitmap

is locked before the mark bit is read. The purpose of the lock is twofold. One is to

ensure that a live object is marked exactly once, and the other is to atomically set the

appropriate mark bit of the word. When all reachable objects are marked, the mark

phase is �nished.

This naive parallel marking hardly results in any recognizable speed-up because of

10



Objects marked by PE2

Objects marked by PE1

PE1’s root PE2’s root

heap

Figure 4.1: In the simple algorithm, all nodes of a shared tree are marked by one

processor.

the imbalance of marking tasks among processors. Load imbalance is signi�cant when

a large data structure is shared among processors through a small number of externally

visible objects. For example, a signi�cant imbalance is observed when a large tree is

shared among processors only through a root object. In this case, once the root node

of the tree is marked by one processor, so are all the internal nodes (Figure 4.1).

To improve marking performance, our collector performs dynamic load balancing by

exchanging entries stored in mark stacks.

4.1.2 Dynamic Load Balancing of Marking

Besides a local mark stack, each processor maintains an additional data structure

named stealable mark queue, through which \tasks" (entries in mark stacks) are ex-

changed (Figure 4.2). During marking, each processor periodically checks its stealable

mark queue. If it is empty, the processor moves all the entries in the local mark stack

11



PE

PE

PE

Tasks

Mark stack Lock Stealable
mark queue

Figure 4.2: Dynamic load balancing method: tasks are exchanged through stealable

mark queues.

(except entries that point to the local root, which can be processed only by the local

processor) to the stealable mark queue. When a processor becomes idle (i.e., when

its mark stack becomes empty), it tries to obtain tasks from stealable mark queues.

The processor examines its own stealable mark queue �rst, and then those of other

processors, until it �nds a non-empty queue. Once it �nds one, it steals half of the

entries1 in the queue and stores them into its mark stack. Because several processors

may become idle simultaneously, this test-and-steal operation must acquire a lock on

a queue. The mark phase is terminated when all the mark stacks and stealable mark

queues become empty. The termination is detected by using a global counter to main-

tain the number of empty stacks and empty queues. The counter is updated whenever

a processor becomes idle or obtains tasks.

1If the queue has n entries and n is an odd number, (n+ 1)=2 entries are stolen.
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4.1.3 Parallel Sweeping

In the parallel algorithm, all processors share a single heap block free list, while each

processor maintains a local reclaim list. In the sweep phase, each processor examines a

part of the heap and links empty heap blocks to the heap block free list and non-empty

ones to its local reclaim list. Since each processor has a local reclaim list, inserting

blocks to a reclaim list is straightforward. Inserting blocks to the heap block free

list is, however, far more di�cult, because the heap block free list is shared, blocks

must sorted by their addresses, and adjacent blocks must be coalesced. To reduce the

contention and the overhead on the shared list, we make the unit of work distribution

in the sweep phase larger than a single heap block and perform tasks as locally as

possible; each processor acquires a large number of (64 in the current implementation)

contiguous heap blocks at a time and processes them locally. Empty blocks are locally

sorted and coalesced within the blocks acquired at a time and accumulated in a local

list called partial heap block free list. Each processor repeats this process until all

the blocks have been examined. Finally, the lists of empty blocks accumulated in

partial heap block free lists are chained together to form the global heap block free

list, possibly coalescing blocks at joints. When this sweep phase is �nished, we restart

the application.

4.2 Performance Limiting Factors and Solutions

The basic marking algorithm described in previous section exhibits acceptable speed-

up on small-scale systems (e.g., approximately fourfold speed-up on eight processors).

As we will see in Chapter 6, however, several factors severely limit speed-up and this

basic form never yields more than a 12-fold speed-up. Below we list these factors and

describe how did we address them in turn.

Load imbalance by large objects: We often found that a large object became a

source of signi�cant load imbalance. Recall that the smallest unit of task distri-

bution is a single entry in a stealable mark queue, which represents a single object

in memory. This is still too large! We often found that only some processors were
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busy scanning large objects, while other processors were idle. This behavior was

most prominent when applications used many stacks or large arrays. In one of

our parallel applications, the input data, which is a single 800-KB array caused

signi�cant load imbalance. In the basic algorithm, it was not unusual for some

processors to be idle during the entire second half of a mark phase.

We address this problem by splitting large objects (objects larger than 512 bytes)

into small (512-byte) pieces before it is pushed onto the mark stack. In the

experiments described later, we refer to this optimization as SLO (Split Large

Object).

Delay in testing mark bitmap: We observed cases where processors consumed a

signi�cant amount of time acquiring locks on mark bits. A simple way to guar-

antee that a single object is marked only once is to lock the corresponding mark

bit (more precisely, the word that contains the mark bit) before reading it. How-

ever, this may unnecessarily delay processors that read the mark bit of an object

to just know the object is already marked. To improve the sequence, we re-

placed this \lock-and-test" operation with optimistic synchronization. We tests

a mark bit �rst and quit if the bit is already set. Otherwise, we calculate the

new bitmap for the word and write the new bitmap in the original location, if

the location is the same as the originally read bitmap. This operation is done

atomically by compare&swap instruction in SPARC architecture or load-link and

store-conditional instructions in MIPS architecture. We retry if the location has

been overwritten by another processor. These operations eliminate useless lock

acquisitions on mark bits that are already set. We refer to this optimization as

MOS (Marking with Optimistic Synchronization) in the experiments below.

Another advantage of this algorithm is that it is a non-blocking algorithm [8,

18, 19], and hence does not su�er from untimely preemption. A major problem

with the basic algorithm is, however, that locking a word in a bitmap every

time we check if an object is marked causes contention (even in the absence of

preemption). We con�rmed that a \test-and-lock-and-test" sequence that checks
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the mark bit before locking works equally well, though it is a blocking algorithm.

Serialization in termination detection: When the number of processors becomes

large, we found that the GC speed suddenly dropped. It revealed that processors

spent a signi�cant amount of time to acquire a lock on the global counter that

maintains the number of empty mark stacks and empty stealable mark queues.

We updated this counter each time a stack (queue) became empty or tasks were

thrown into an empty stack (queue). This serialized update operation on the

counter introduced a long critical path in the collector.

We implemented another termination detection method in which two 
ags are

maintained by each processor; one tells whether the mark stack of the processor

is currently empty and the other tells whether the stealable mark queue of the

processor is currently empty. Since each processor maintains its own 
ags on

locations di�erent from those of the 
ags of other processors, setting 
ags and

clearing 
ags are done without locking.

Termination is detected by scanning through all the 
ags in turn. To guarantee

the atomicity of the detecting process, we maintain an additional global 
ag

detection-interrupted , which is set when a collector recovers from its idle state.

A detecting processor clears the detection-interrupted 
ag, scans through all

the 
ags until it �nds any non-empty queue, and �nally checks the detection-

interrupted 
ag again if all queues are empty. It retries if the process has been

interrupted by any processor. We must take care of the order of updating 
ags

lest termination be detected by mistake. For example, when processor A steals

all tasks of processor B, we need to change 
ags in the following order: (1) stack-

empty 
ag of A is cleared, (2) detection-interrupted 
ag is set, and (3) queue-

empty 
ag of B is set. We refer to this optimization as NSB (Non-Serializing

Barrier).
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Chapter 5

Experimental Conditions

We have implemented the collector on two systems: the Ultra Enterprise 10000 and

the Origin 2000. The former has a uniform memory access (UMA) architecture and the

latter has a nonuniform memory access (NUMA) architecture. The implementation is

based on the source code of Boehm GC version 4.10. We used four applications written

in C++: BH (an N-body problem solver), CKY (a context free grammar parser), Life

(a life game simulator) and RNA (a program to predict RNA secondary structure).

5.1 Ultra Enterprise 10000

Ultra Enterprise 10000 is a symmetric multiprocessor with sixty-four 250 MHz Ultra

SPARC processors. All processors and memories are connected through a crossbar

interconnect whose bandwidth is 10.7 GB/s. The L2 cache block size is 64 bytes.

5.2 Origin 2000

Origin 2000 is a distributed shared memory machine. The machine we used in the

experiment has sixteen 195 MHz R10000 processors. That system consists of eight

modules, each of which has two processors and the memory module. The modules

are connected through a hypercube interconnect whose bandwidth is 2.5 GB/s. The

memory bandwidth of each module is 0.78 GB/s and the L2 cache block size is 128

bytes.

In the default con�guration, each memory page (whose size is 16 KB) is placed on
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the same node as the processor that accessed the page �rst. Therefore processors

can have desired pages on local by touching the pages at the initializing phase of the

program. We used two physical memory allocation policies in the experiment:

Local to allocator (LA) Each heap block and corresponding mark bitmap are local

to the processor that allocate the heap block �rst.

Round-robin (RR) The home node of a heap block is determined by its address

rather than the allocator of the block. The heap block is local to processor P

such that

P = ( Address = PAGESIZE )mod #Processors.

The home of a mark bitmap is determined in the same rule.

5.3 Applications

We used following four applications written in C++. BH and CKY are parallel ap-

plications. We wrote Enterprise version of those applications in a parallel extension to

C++ [14]. This extension allows programmer to create user level threads dynamically.

The runtime implicitly uses fork system call at the beginning of the program. Since

this extension does not work on Origin now, we wrote those applications on Origin by

using fork system call explicitly. Life and RNA are sequential applications; even those

sequential applications can utilize our parallel collection facility.

BH simulates the motion of N particles by using the Barnes-Hut algorithm [1]. At

each time step, BH makes a tree whose leaves correspond to particles and calcu-

lates the acceleration, speed, and location of the particles by using the tree. In

the experiment, we simulate 10000 particles for 50 time steps.

CKY takes sentences written in natural language and the syntax rules of that lan-

guage as input, and outputs all possible parse trees for each sentence. CKY

calculates all nonterminal symbol for each substring of the input sentence in

bottom-up. In the experiment, each of the given 256 sentences consists of 10 to

40 words.
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Life solves \Conway's Game of Life". It simulates the cells on square board. Each

cell have either of two states, ON and OFF. The state of a cell is determined by

states of adjacent cells at the previous time step. The program takes a list that

contains ON cells in an initial state. The number of initial ON cells is 5685 in

our experiment. We simulate them for 150 time steps.

RNA predicts the secondary structure of an RNA sequence. The input data is a set

of stack regions and each stack region has its position and energy. A set of stack

regions is called feasible if any pair of its elements ful�lls a certain condition.

The problem is to �nd all feasible subsets of given stack regions whose total

energy is no smaller than a threshold. The size of input stack regions is 119 in

our experiment.

5.4 Evaluation Framework

Ideally, the speed-up of the collector should be measured by using various numbers

of processors and applying the algorithm to the same snapshot of heap. It is di�cult,

however, to reproduce the same snapshot multiple times because of the indeterminacy

of application programs. The amount of data is so large that we cannot simply dump

the entire image of the heap. Even if such dumping were feasible, it would still be

di�cult to continue from a dumped image with a di�erent number of processors.

Thus the only feasible approach is to formulate the amount of work needed to �nish a

collection for a given heap snapshot and then calculate how fast the work is processed

at each occurrence of a collection.

A generally accepted estimation of the workload of marking for a given heap con-

�guration is the amount of live objects, or equivalently, the number of words that are

scanned by the collector. This, however, ignores the fact that the load on each word

di�ers depending on whether it is a pointer, and the density of pointers in a live data

may di�er from one collection to another. Given a word in heap, Boehm GC �rst

performs a simple test that rules out most non-pointers and then examines the word

more elaborately.
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To measure the speed-up more accurately, we de�ne the workload W of a collection

as

W = a1x1 + a2x2 + a3x3 + a4x4 + a5x5

where x1 is the number of marked objects, x2 the number of times to scan already

marked objects, x3 the number of times to scan non-pointers, x4 the number of empty

heap blocks, and x5 the number of non-empty blocks 1. Each xn is totaled over all

processors. The GC speed S is de�ned as S =W=t, where t is the elapsed time of the

collection. And the GC speed-up on N processors is the ratio of S on N processors

to S on a single processor. When we measure S on a single processor, we eliminate

overhead for parallelization.

The constants an were determined through a preliminary experiment. To determine

a3, for example, we created a 1000-word object that contained only non-pointers and

we measured the time to scan the object. We ran this measurement several times

and used the shortest time. It took 20 us to scan a 1000-word object on Enterprise

10000; that means 0.020 us per word. From this result, we let a3 = 0:020. The other

constants were determined similarly. The intention of this preliminary experiment is

to measure the time for the workload without any cache misses.

In the experiment, the constants were set at a1 = 0:50, a2 = 0:16, a3 = 0:020,

a4 = 2:0, and a5 = 1:3 on Enterprise 10000, and a1 = 0:42, a2 = 0:13, a3 = 0:028,

a4 = 2:0, and a5 = 1:3 on Origin 2000.

1The marking workload is derived from x1; x2; x3 and the sweeping workload is from x4; x5.
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Chapter 6

Experimental Results

6.1 Speed-up of GC

Figures 6.1-6.16 show performance of GC using the four applications on two systems.

We measured several versions of collectors. \Sequential" refers to the original Boehm

GC and \Simple" refers to the algorithm in which each processor simply marks objects

that are reachable from the root of that processor without any further task distribution.

\Basic" refers to the basic algorithm described in Section 4.1, and the following three

versions refer to ones that implement all but one of the optimizations described in

Section 4.2. \No-XXX" stands for a version that implements all the optimizations

but XXX. \Full" is the fully optimized version. We measured an additional version on

Origin 2000, \Full-LA". This is the same as \Full" but takes di�erent physical memory

allocation policy. \Full-LA" takes \Local to Allocator" policy, while all other versions

do \Round-robin" policy.

The applications were executed four times in each con�guration and invoked collec-

tions more than 40 times. The table shows the average performance of the invocations.

When we used all or almost all the processors on the machine, we occasionally ob-

served invocations that performed distinguishably worse than the usual ones. They

were typically 10 times worse than the usual ones. The frequency of such unusually

bad invocations was about once in every �ve invocations when we used all processors.

We have not yet determined the reason for these invocations. It might be the e�ect of

other processes. For the purpose of this study, we exclude these cases.
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Figure 6.1{6.4 and 6.8{6.11 compare three versions, namely, Simple, Basic, and

Full. The graphs show that Simple does not exhibit any recognizable speed-up in any

application. As Figure 6.1{6.4 show, Basic on Enterprise 10000 performs reasonably

until a certain point, but it does not scale any more beyond it. The exception is RNA,

where we do not see the di�erence between Basic and Full. The saturation point of

Basic depends on the application; Basic of CKY reaches the peak on 32 processors,

while that of BH reaches the saturation point on 8 processors. The peak of Life is

48 processors. Full achieved about 28-fold speed-up in BH and in CKY, and about

14-fold speed-up in Life and RNA on 64 processors.

On 16-processor Origin 2000, the di�erence between Basic and Full is little, except

in BH. The some performance problems in Basic, however, appear only when the

number of processors becomes large as we have observed on Enterprise 10000; thus,

Full would be more signi�cant on larger system. Full achieved 3.7{6.3-fold speed-up

on 16 processors.

6.2 E�ect of Each Optimization

Figure 6.5{6.7 show how each optimization a�ects scalability on Enterprise 10000.

Especially in BH and in CKY, removing any particular optimization yields a sizable

degradation in performance when we have a large number of processors. Without the

improved termination detection by the non-serializing barrier (NSB), neither BH nor

CKY achieves more than a 17-fold speed-up. Without NSB, Life does not scale on more

than 48 processors, too. Sensitivity to optimizations di�ers among the applications;

Splitting large objects (SLO) and marking with optimistic synchronization (MOS)

have signi�cant impacts in BH, while they do not in other applications.

SLO is important when we have a large object in the application. In BH, we use

a single array named particles to hold all particles data, whose size is 800 KB

in our experiments. This large array became a bottleneck when we omitted SLO

optimization. This phenomenon was noted on Origin 2000, as Figure 6.12 indicates.

Generally, MOS have signi�cant e�ects when we have objects with big reference

counts, because these objects cause many contentions between collectors that try to
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visit them. The experiment revealed that the array particles was the source of

problem again; in one collection cycle, we observed that we had about 70,000 pointers

to this array. That caused signi�cant contentions. This big reference count was pro-

duced by the stack of user threads. Because our BH implementation computes forces

to the particles in parallel, each thread has references to its responsible particles. Al-

though those references are directed to distinct addresses (for example, ith thread has

references to particles[i]), all of them are regarded as pointers to a single object

particles. MOS optimization e�ectively alleviate the contentions in such case and

improve the performance.

We observe signi�cant impact of NSB optimization on GC speed in three applica-

tions, but we do not see that in RNA even on 64 processors. Although the reason for

this di�erence is not understood well, in general, NSB is important when collectors

tend to become idle frequently. This is because collectors often update the idle coun-

ters, when we do not implement NSB. In RNA, the frequency of the task shortage

may be low. We will investigate whether this hypothesis is the case in the future.

6.3 E�ect of Physical Memory Allocation Policy

Figure 6.13{6.16 compare two memory placement policies: `Local to allocator (LA)'

and `Round-robin (RR)' on Origin 2000, described in Section 5.2. Full adopts RR

policy and Full-LA LA. As we can see easily, collection speed with RR is signi�cantly

faster than that with LA in three applications, BH, CKY and RNA. When we adopt

LA policy, GC speed does not improve on more than eight processors.

While we have not fully analyzed this, we conjecture that this is mainly due to the

imbalance in the amount of allocated physical pages among nodes. With LA policy,

the access to objects and mark bitmaps in the mark phase contend at nodes that

have allocated many pages. Actually, BH has signi�cant memory imbalance because

only one processor construct a tree of particles. And all objects in RNA are naturally

allocated by one processor because our RNA is sequential program 1.

1We will investigate why this is not the case in Life, which is also sequential program.
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6.4 Discussion on Optimized Performance

As we have seen in Section 6.1, the GC speed of fully optimized version always get

faster as the number of processors increases in any applications. But they considerably

di�er in GC speed; for instance, it is 28-fold speed-up in BH and CKY, while 14-fold in

Life and RNA on Enterprise 10000. In order to try to �nd the cause of this di�erence,

we examined how processors spend time during the mark phase 2. Figure 6.17{6.20

show the breakdowns. From these �gures, we can say that the biggest problem in Life

is load imbalance, because processors spend a signi�cant amount of time in idle. The

performance improvement may be possible by re�ning the load balancing method.

On the other hand, we currently can not specify the reasons of the relatively bad

performance in RNA, where processors are busy during 90% of the mark phase.

2In most collection cycles, the sweep phase is �ve to ten times shorter than mark phase. We

therefore focus on the mark phase.
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Sequential Sequential code without overhead for parallelization.

Simple Parallelized but no load balancing is done.

Basic Only load balancing is done.

No-SLO All optimizations but SLO (splitting large object) are done.

No-MOS All optimizations but MOS (marking with optimistic synchronization) are done.

No-NSB All optimizations but NSB (non-serializing barrier) are done.

No-SLO All optimizations but SLO (splitting large object) are done.

Full All optimizations are done.

Full-LA Origin 2000 only. Same as Full, but the physical memory allocation policy is \Local to Allocator".

Table 6.1: Description of labels in following graphs. Except Full-LA, the physical

memory allocation policy on Origin 2000 is \Round-robin".
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Figure 6.1: Average GC speed-up in BH on Enterprise 10000.
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Figure 6.2: Average GC speed-up in CKY on Enterprise 10000.
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Life (Enterprise 10000)
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Figure 6.3: Average GC speed-up in Life on Enterprise 10000.
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Figure 6.4: Average GC speed-up in RNA on Enterprise 10000.
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Figure 6.5: E�ect of each optimization in BH on Enterprise 10000.
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Figure 6.6: E�ect of each optimization in CKY on Enterprise 10000.
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Figure 6.7: E�ect of each optimization in Life on Enterprise 10000.
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Figure 6.8: Average GC speed-up in BH on Origin 2000.
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Figure 6.9: Average GC speed-up in CKY on Origin 2000.
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Life (Origin 2000)
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Figure 6.10: Average GC speed-up in Life on Origin 2000.
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Figure 6.11: Average GC speed-up in RNA on Origin 2000.
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Figure 6.12: E�ect of each optimization in BH on Origin 2000.
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Figure 6.13: E�ect of physical memory allocation policy in BH on Origin 2000.
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Figure 6.14: E�ect of physical memory allocation policy in CKY on Origin 2000.
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Life (Origin 2000)
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Figure 6.15: E�ect of physical memory allocation policy in Life on Origin 2000.

RNA (Origin 2000)

0

2

4

6

8

10

0 5 10 15
number of processors

sp
ee

d-
up

Full
Full-LA
linear

Figure 6.16: E�ect of physical memory allocation policy in RNA on Origin 2000.
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Figure 6.17: Breakdown of the mark phase in BH on Enterprise 10000. This shows

busy, waiting for lock, moving tasks, and idle.
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Figure 6.18: Breakdown of the mark phase in CKY on Enterprise 10000.
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Life (Enterprise 10000)
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Figure 6.19: Breakdown of the mark phase in Life on Enterprise 10000.
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Figure 6.20: Breakdown of the mark phase in RNA on Enterprise 10000.
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Chapter 7

Conclusion

We constructed a highly scalable parallel mark-sweep garbage collector for shared-

memory machines. Implementation and evaluation are done on two systems: Ultra

Enterprise 10000, a symmetric shared-memory machine with 64 processors and Ori-

gin 2000, a distributed shared-memory machine with 16 processors. This collector

performs dynamic load balancing by exchanging objects in mark stacks.

Through the experiments on the large-scale machine, we found a number of factors

that severely limit the scalability, and presented the following solutions: (1) Because

the unit of load balancing was a single object, a large object that cannot be divided

degraded the utilization of processors. Splitting large objects into small parts when

they are pushed onto the mark stack enabled a better load balancing. (2) We observed

that processors spent a signi�cant time for lock acquisitions on mark bits in BH. The

useless lock acquisitions were eliminated by using a optimistic synchronization instead

of a \lock-and-test" operation. (3) Especially on 32 or more processors, processors

wasted a signi�cant amount of time because of the serializing operation used in the

termination detection with a global counter. We implemented non-serializing method

using local 
ags without locking, and the long critical path was eliminated.

On Origin 2000, we must pay attention to physical page placement. With the default

policy that places a physical page to the node that �rst touches it, the GC speed was

not scalable. We improved performance by distributing physical pages in a round

robin fashion. We conjecture that this is because the default policy causes imbalance
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of access tra�c between nodes; since some nodes have much more physical pages

allocated than other nodes, accesses to these highly-loaded nodes tend to contend,

hence the latency of such remote accesses accordingly increases. For now, we do not

have enough tools to conclude.

When using all these solutions, we achieved 14 to 28-fold speed-up on 64-processor

Enterprise 10000, and 3.7 to 6.3-fold speed-up on 16-processor Origin 2000.
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Chapter 8

Future Work

We would like to improve the GC performance further. In Section 6.4, we have seen

that the collectors in some applications still spend a signi�cant amout of time in idle.

We will investigate how we can improve the load balancing method. Instead of using

bu�ers for communication (the stealable mark queues), stealing tasks from victim's

mark stack directly may enable faster load distributing.

We have also noticed that we cannot explain the relatively bad performance of RNA

by the load imbalance alone. This may be due to the number of cache misses, which

are included by `Busy' in Figure 6.20. We can capture the number of cache misses

by using performance counters, which recent processors are equipped with. We can

use the R10000's counters through /proc �le system on Origin 2000. And we have

constructed a simple tool to use the Ultra SPARC's counters on Enterprise 10000.

With these tools, we are planning to examine how often processors meets cache misses.

In Section 6.3, we mentioned that we can obtain better performance with the RR

(Round-robin) physical memory allocation policy than with the LA (Local to allocator)

policy. So far, the focus of our discussion is the speed of GC alone. But the matter

will be complicated when we take account into the locality of application programs.

LA policy may be advantageous when a memory region tends to be accessed by the

allocator. The ideal situation would be that most accesses by application are local,

while collection task is balanced well.
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